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Received 3 June 1988, in final form 15 March 1989 

Abstract. Energy eigenvalues and eigenfunctions are obtained for the finite-element 
Schrodinger equation in the cases of linear and harmonic potentials. For the harmonic 
oscillator, the eigenfunctions in momentum space are related to Gegenbauer polynomials 
and have a simpler form than those for the usual lattice Schrodinger equation obtained 
using finite differences. In the case of linear potential the eigenfunctions are related to 
Whittaker functions. For each potential it is demonstrated both theoretically and numeri- 
cally that the eigenvalues and eigenfunctions have the correct confinuum limit. 

1. Introduction 

The lattice formulation of quantum field theories allows the non-perturbative calcula- 
tion of bound state masses and decay amplitudes. However there are problems in the 
case of systems involving fermions where one encounters the fermion doubling problem, 
reviewed by Karsten and Smit (1981). A way of avoiding this problem is to use the 
method of finite elements to solve the field equations (Bender and Sharp 1983, Bender 
et a1 (1983, 1985, 1986), Moncrief 1983, VBsquez 1985, and Hands and Kenway 1986). 

Unfortunately field theories such as QCD cannot be solved in closed form. However, 
in quantum mechanics there are two examples of potentials where the energy spectrum 
can be obtained explicitly on the lattice. They are the harmonic oscillator and linear 
potentials and these examples have been used to test numerical methods for obtaining 
the continuum limit by Jurkiewicz and Wosiek (1978a, b). These authors used the 
finite-diference form of the lattice Schrodinger equation, which we will review briefly 
in § 2, and we will there also introduce the corresponding finite-element form. The 
latter may also be derived using irreducible difference operators (Ebrahimi 1987). 

The energy eigenvalues of the harmonic oscillator for the finite-difference case are 
related to the characteristic numbers of Mathieu’s equation, while we will demonstrate 
in 0 3 that, in the finite-element case, they are given by much simpler algebraic 
expressions. It will also be shown there that the corresponding eigenfunctions in 
momentum space are proportional to Gegenbauer polynomials. They would therefore 
provide, for example, a simple basis for the variational calculations of ground-state 
energies for more complicated systems. This section is completed by the demonstration 
that the eigenvalues and eigenfunctions obtained for the jnite-element Schrodinger 
equation have the correct continuum limit in the case of harmonic oscillator potential. 
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Iran 9834. 
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The lattice Schrodinger equation for the linear potential is considered in Q 4. Using 
continued fractions, it is demonstrated that the eigenfunctions in the Jinite-elemenf 
case are related to Whittaker functions and the corresponding eigenvalues to zeros of 
these functions. This is to be compared with theJinite-di’erence case where eigenfunc- 
tions and eigenvalues are related to Bessel functions and their zeros (Jurkiewicz and 
Wosiek 1978b). Once again we will demonstrate that eigenfunctions and eigenvalues 
have the correct continuum limit. 

Finally in Q 5 we present numerical results comparing the two methods for latticising 
the Schrodinger equation and draw our conclusions. 

2. Schrodinger’s equation on a lattice 

The Schrodinger equation for a particle of mass m moving in a potential V(x) is 
2 2  

-h q+ V(x)$(x) = E$(x) --co<x<Co. 
2 m  dx 

We now introduce a lattice into coordinate space by setting x = nu with n = 0, *l, 
*2,. . , , where a is the lattice spacing. 

the finite-drference method replaces d$/dx by (1/2a) [ $ ( a ( n  + 1 ) ) - $ ( u ( n  - l))]  
in (2.1) which then becomes 

= E$(an) n =o,  *l ,  *2,. . . (2.2) 
It is easy to see that (2.1) may be written as the pair of coupled first-order equations: 

(2.3) 

where f ( x )  = [ E  - V(x)]+h(x). In the Jinite-element method $(x) is approximated in 
the intervals [nu,  ( n  + l ) a ]  by 

$ A ( X ) = $ ( a n ) + [ ~ ( a ( n + 1 ) ) - 9 ( a n ) l ( x - n a ) l a  (2.4) 
and similarly for +(x)  and f ( x ) .  These approximate functions are required to satisfy 
(2.3) at the midpoint of the above interval so that on eliminating 4, 
- h2 

- [$(a(n+1)) -2cL(an)+$(a(n  - 1111 2ma2 

=+{[E - V ( ~ ( n + l ) ) ] $ ( ~ ( n + l ) ) + 2 [ E  - V ( U ~ ) ] $ ( U ~ )  

+ [ E  - V(a(n - l ) ) I$(a(n  - 1))). (2.5) 
This is our form of the jinife-element Schrodinger equation and it may also be construc- 
ted using irreducible lattice diference opera fors (Ebrahimi 1987). 

3. The harmonic oscillator spectrum 

The eigenvalue spectrum for the harmonic oscillator potential V(x) = x2/2 may be 
found by transforming the lattice equations (2.2) and (2.5) into momentum space by 
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taking 
T/ a 

n = 0 ,  * l ,  *2,. . . . (3.1) + ( a n )  =- a [ dpr];(p) exp(-ianp) 
2~ - r / a  

The jnite-element equation is then equivalent to ( h  = m = 1) 

2 sin2(ap/2)&p) 

= ( a 2 E  cos*(ap/2)+fag cos2(ap/2) - r / a  < p <  r / a .  

(3.2) 

The energy spectrum is given by the following result. 

Theorem 3.1. The energy eigenvalues are the set: 

N =0 ,  1 ,2 , .  . . (3.3) EA N - g a  - 1  2 [2A(N+f )+  N*] 

with corresponding momentum space eigenfunctions: 

$ ,̂( P) = A^,[c0s(ap/2)lAC^,(sin(ap/2)) N = 0 ,  1 ,2 , . .  . (3.4) 

where the normalisation constant A; = 2A-”*r(A){[( N + A)N!]/[T(2A + N)]}”*, C ,̂ 
are the usual Gegenbauer polynomials and 

A =f[1+(l+64/a4)”*] .  (3.5) 

Proof: We may write (3.2) in the form 

(3.6) 

with 

5 = a P  4(5)  = &PI p = i / a 4  E = 2 E / a 2 .  (3.7) 

Since the tangent square term diverges at 5 = -T, r the appropriate boundary conditions 
are that 4 ( * r )  = 0. Equation (3.6) may be transformed by the substitutions 

4(5)  = g(u)[cos(5/2)lA U = sin( 5/2) (3.8) 

into the form 

( 1 - U*) 7 d2g(u)  - (1 + 2 A  )U - d g ( u ) + 4 ( ~ - $ ) g ( u ) = 0 .  
du du (3.9) 

This equation has solutions which are finite at U = *1(5 = * r )  only when 

4~ - A  = N(2h + N )  N = 0, 1,2, . . . (3.10) 

For these values of E the solutions are the Gegenbauer polynomials C^,(u). Using 
(3.7) and (3.8) the corresponding eigenvalues E and eigenfunctions $(p) are given 
by (3.3) and (3.4) with the normalisation constant Ah chosen so that 

(3.11) 
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Corollary 3.1. The lattice space wavefunction is 

$ h ( a n )  = B,F( - N  + 2m, - n  - i N +  m - + A ;  1 - n -+N + m +{A; -1) 

where 

[ N I 2 1  

m = O  
(3.12) 

(-1)"'2-"+'T(A + N - m)AAL 
B, = 

m !  ( ~ - 2 m ) ! r ( 1  + f ~ -  m +{A + n ) T ( l  - f ~ +  m + f A  - n )  ' 
(3.13) 

Pro05 Substituting into (3.4) the polynomial expansion for C^,(z): 

[NI21  (-l)m+H+N 2N-2m+1 T(A + N - m)AL 
r m  ! ( N - 2m)! I-( A ) 

x j: (sin Z)*(COS z ) ~ - ' " '  exp(-2inz) dz 

and the result follows from standard integrals (Erdelyi et a1 1953). 

+"Nan)= c 
m = O  

(3.14) 

We now consider the continuum limit ( a  + 0 and an -+ x)  of the eigenvalues E^, and 
eigenfunctions + h ( a n ) .  In this limit, A = 4 / a 2  so that from (3.3), lima.+o E ;  = N + $ .  
The energy eigenvalues therefore have the correct continuum limit. With our chosen 
normalisation for the eigenfunctions, it is & + h ( a n )  which should tend to the con- 
tinuum wavefunction 9 ( x j  with normalisation 19(x)12 d x  = 1. That this is the case 
is demonstrated by the following. 

Theorem 3.2. As a -+ 0, Aa2 -+ 4 and an -+ x, 

n=0 ,*1 ,*2  , . . . ;  N = 0 , 1 , 2  , . . .  (3.15) 

Prooj Using Stirling's formula to approximate the gamma functions in the definition 
o f A h  and B, given by (3.13), it may be shown that, in the limit a -+ 0, ha'+ 4and  an + x, 

B, = (3.16) 

Let us now consider the hypergeometric function appearing in the definition (3.12) of 
$^ , (an) .  This satisfies the recurrence relation (Erdelyi et a1 1953) 

( -  1 )N/2 exp( - x 2 / 2 ) ~  N/I-m-1/42-N/2+3!2(~ !)1/ZTI/4 

m !  (N -2m)!  

F ( - (k -1 ) ,  b ;  C; -1) F ( - k ,  b ;  C; -1) -- ( 3 k +  c +  b )  2k F ( - ( k + l j ,  b ;  ~ ; - 1 ) =  
( c + k )  ( c + k )  

(3.17) 
where b = -n  -{N + m -;A, c = - n  -fN+ m + + A  + 1. Inserting the limiting behaviour 
for n and A in the definitions for b and c, this recurrence relation has the asymptotic 
form: 

4k 
h 

F ( - ( k + l ) ,  b ;  C; - l ) =  b;  C; -1)--F(-(k-I) ,  b ;  C; -1). 

(3.18) 
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Multiplying both sides by A(k+L)i2/2'ktL', we get 

F ( - ( k +  l ) ,  b; C; -1) 

F ( - ( k - l ) ,  b;  C; -1) 
A k i 2  

" X  (+ 
Therefore the asymptotic limit of [(-l)kAk'2/2k]F(-k, b; c; -1) and the Hermite 
polynomials Hek(  x)  satisfy the same recurrence relations. It is straightforward to prove 
that 

(3.20) 

for k = 0 and 1 and since both sides have the same recurrence relations, (3.20) holds 
for all k = 0 , 1 , 2 , .  . . . Substituting from (3.16) and (3.20) in (3.12): 
,j,h(an) 5: ( _ 1 ) 3 N l ' ( ~ ! ) l l 2 2 N I 2 + 3 / 2 ? T 1 / 4 h  114 

The result (3.15) then follows by noting that 

(3.21) 

(3.22) 

where H N ( x )  = 2""H,,(xfi) is an alternative definition for Hermite polynomials, as 
we proved by comparing coefficients of corresponding powers of x. 

4. The linear potential 

Thejnite-element Schrodinger equation for the linear potential V ( x )  = 1x1 has the form 
( f i = l , m = $ ) t  

- [ $ ( a ( n + 1 ) ) - 2 1 k ( a n ) + c C l ( a ( n  - 1))l 
U t  

I 

= + { ( E  - a l n +  l l ) $ ( a ( n + l ) ) + ~ ( E  -alnl),j,(an) 

+ ( E  -a ln - l l )$(a(n - 1))) n = O , k l ,  1 2 , .  . . . (4.1 ) 
This equation has solutions $ ( a n )  = C:(C,) which are symmetric (antisymmetric) in 
n. The recurrence relations (4.1) are equivalent to 

[ X  + A - ( k  + l)]Clk<'  - 2[X - A + k]C; ' - '  + [X + A - ( k  - l)]Cl?:'' = 0 

k = 1 , 2 , 3 , .  . . 

[ X  + A  - 1]c: - [ X  - h]C,f = 0 

(4.2) 

(4.3a) 

[X+A -2]C;-2[X-A + l ] C ; = O  c, = 0. (4.3b) 

where A = E / a  and X = 4 / a 3  with 'initial conditions' 

+ Note that the unit of mass is defined differently from that used in $ 3 .  This is to simplify the expression 
for the asymptotic form of the eigenvalues and eigenfunctions given in (4.20) and (4.25), and these units 
were used by Jurkiewicz and Wosiek (1978b). 
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We see that both symmetric and antisymmetric solutions satisfy the same recurrence 
relations (4.2) but with different initial conditions (4.3a) and (4.36). 

It is well known that three-term recurrence relations are associated with continued 
fractions and we will follow a recent discussion by Masson (1988). Let 7.4 = 
( X + h  - k)C;; k = 0 , 1 , 2 , .  . . . Then (4.2) and (4.3) can be written in the form 

where 

The ‘initial conditions’ are 

Y 1 / Y o =  212 (symmetric case) 

Yo = 0 (antisymmetric case). 
(4.6) 

The three-term recurrence relation (4.4) will, in general, have two independent 
solutions and we require the subdominant solution which corresponds to the boundary 
condition +(x)+O as Ix l+c~.  From (4.4) we have formally that 

(4.7) 1 Yo z + 2 G + K  -1 7 --- - 
y1 1 - G  k = l  [ ( ~ + 2 G k ( k + l ) ) / ( l - G ( k + l ) ) ]  

where on the RHS we have used a standard notation for continued fractions (Jones 
and Thron, 1980). 

There is a theorem by Pincherle (Gautschi 1967, Masson 1985) which states that, 
if the continued fraction converges, then (4.7) is satisfied by the required subdominant 
solution of (4.4). The continued fraction above may be transformed by an equivalence 
relation, so that 

Y1 k = l  Zl - D l k  

and more generally we have 

-(Alk2+ Blk+ 
I = l , 2 ,  . . .  YI-1 

Yl k =  I ( Z l -  Dlk 
-- - ‘ I+ (4.9) 

where 

Zl= ( z + 21G)/( 1 - IG) AI = G2/( 1 - IG)’ 

BI = [(21- 1)G2 -2G]/( 1 - IG)’ Cl = ( 1  - lG+ G)/(  1 - IG) (4.10) 

Dl = -2G/(1- IG). 

We are now ready to prove the theorem giving the energy eigenvalues and corresponding 
eigenfunctions. 

Theorem 4.1. The energy eigenvalue spectrum for the antisymmetric states is given by 
the condition 

W X + , , ~ , ~ ~ X ) = O  ( 4 . 1 1 ~ )  
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while that for the symmetric states is 

Wk+A,1/2(4X) = O  

The corresponding eigenfunctions are 
where X = 4/a3, A = E / a .  
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(4.11b) 

(4.120) 

= N W X + ~ , ~ / A ~ X )  n = O  (4.12 b) 

where 5 = 1 for symmetric states and j = sgn n for antisymmetric states. N is a 
normalisation constant which is independent of n but can depend on X, A. 

Proof: From relations (1.2) and (2.16) of Masson (1988) which give expressions for 
RHS of (4.9) in terms of confluent hypergeometric functions 9 ( b ,  c; Y ) ,  we find 

(4.13) 
where a,, p, are defined by the relation 

A!Y2+&Y+ c, = AdY+ ./)(Y + P I ) .  

a/ = 1 -  X - A  

Using the definition (4.5) and (4.10): 
p , = a / - 1 .  (4.14) 

The confluent hypergeometric functions are related to Whittaker's functions: 

WK+( Y )  = exp(- Y / 2 )  Y"+l"T(b, c; Y) (4.15) 
with 

~ = f c - b  p = ( c - 1 ) / 2 .  
Substituting in (4.13) and using (4.14) 

(4.16) 

For antisymmetric states, y o = O ,  so that ( 4 . 1 1 ~ )  follows from (4.16) with 1 = 1. For 
symmetric states from (4.6) and (4.16) 

1 wX + A  + 1-1. - -- Yf-I  
Y I  ( X + A - ~ )  WX+A-i.i/2(4X) ' 

( X + A ) ( X + A - l )  wX+A-~,~/2(4x)-(x-A) wX+A,l,2(4x)=o (4.17) 
which, using identities (13.4.31) and (13.4.33) of Abramowitz and Stegun (1968), can 
be shown to be equivalent to (4.11b). 

From (4.16) 

The corresponding eigenfunctions are, for non-negative n, 

(4.18) 

(4.19) 

where N is a suitable normalisation constant and the definition of yf in terms of Cf 
has been used. Equation (4.12) of the theorem then follows from the symmetry of the 
wavefunction. 
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For the case of the linear potential in the finite-diference Schrodinger equation (2.2), 
Jurkiewicz and Woseik (1978b) showed that the eigenfunctions are related to Bessel 
functions and eigenvalues to zeros of these functions. The asymptotic behaviour of 
the Bessel functions are well documented and the above authors showed that the 
eigenvalue spectrum had the correct continuum limit ( a  + 0), related to zeros of Airy's 
function Ai( x) and its derivative, and similarly for the eigenfunctions. 

The eigenvalues in the finite-element case are given by conditions (4.11a, b )  and 
we are interested in the limit as a + 0. The limiting behaviour of wX+A,1/2(4x), where 
A = E / a and X = 41 a3  both tend to infinity, has been discussed by Erdelyi and Swanson 
(1957). From their equation (10.4) the leading behaviour of the function as a + O  is 

W , , , , , , ~ ( ~ X )  = ( 2 ~ 5 1 ~ ~ 1 ' ~  (X + (4.20) 

This result may also be obtained using general methods for obtaining the asymptotic 
behaviour of special functions described in the book by Olver (1974). Theorem (3.1) 
in chapter 1 1  is particularly useful in this respect, and may also be used to obtain the 
corresponding leading asymptotic behaviour for the derivatives: 

W;(+A,1,2(4X) 5 (2)- i '4v1/2(X+A)X+A e ~ p [ - ( X + A ) ] ( a ~ / 4 ) ' / ~  Ai'(-E). (4.21) 

as a + 0. 

exp[ -(X + A)](4/ a 2 )  'I4 Ai( - E) .  

We are now in a position to prove the result. 

Theorem 4.2. In the continuum limit ( a  + 0) the energy eigenvalues and corresponding 
eigenfunctions for the finite-element Schrodinger equation with V ( x )  = 1x1 tend to the 
corresponding continuum eigenvalues and eigenfunctions. 

Proof: Using the asymptotic forms (4.20) and (4.21) in (4.11~1, b) ,  the eigenvalue 
spectrum for the antisymmetric states tends to solutions for E of 

( 4 . 2 2 ~ )  Ai( - E )  = 0 

and for symmetric states to solutions of 

Ai'(-E) = O .  (4.226) 

To study the limit of the corresponding eigenfunctions in the symmetric case, we 
This is precisely the eigenvalue spectrum in the continuum. 

use (4.20) in (4.12) to give for positive y = nu, 

( n  - p )  ) Ai(y - E) Ai(y - E )  5:G ( ' + ( X + A  - n )  Ai(-E) 5 Ai(-E) ' (4.23) 

If we take the normalisation constant in (4.12) to be given by 

N=Ai( -E) /  wX+A,l/2(4x) (4.24) 
we have, on combining with (4.23), 

(I, ( na ) + Ai( y - E ) (4.25) 
when a + 0, n + 00 such that an = y > 0. A similar proof can be used when n, y < 0. 
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For antisymmetric states we chose the normalisation constant in (4.12) to be given 

(4.26) 

which ensures that the lattice and continuum wavefunctions have the same slope at 
y = 0, i.e + ( a ) / a  = Ai’(-E), (we cannot use the previous normalisation (4.24) since 
+(O) = Ai(0) = 0 in this case). From (4.12) and proceeding as previously 

by 

N = a Ai’(-E)/[(X + A ) W , X + ~ - ~ , , , A ~ X ) I  

a+( nu) Ai(y - E )  
$ ( a )  Ai’(-E) 

-5  - (4.27) 

and with the above normalisation we again find that + ( n u )  + Ai(y - E )  as a + 0. This 
completes the proof of theorem 4.2. 

5. Numerical results and conclusions 

The eigenvalue spectrum of the finite-diference Schrodinger equation (2.2) for the 
harmonic oscillator potential V ( x )  = x2/2 has been given by Jurkiewicz and Wosiek 
(1978a). The eigenstates may be divided into two sets. For the first, the eigenfunctions 
are only non-zero for even values of n while for the second they are only non-zero 
for odd values. For the former set the energy eigenvalue spectrum is 

E L = t a 2 [ a 2 , f  Y ) + 2 Y ]  N = 0,2,4, .  . . ( 5 . 1 ~ )  

(5.lb) 

We will compare here numerically rates of convergence of the E ‘N to their continuum 

N = 1,3,5, .  . . -1 2 - 2a [bZN+Z( Y )  + 2  Yl 
where ak, bk are the characteristic values of Mathieu’s equation, and Y = 1/4a4. 

limit with the rates of convergence of energy eigenvalues: 

= Qa2[2A ( N  +f) + N 2 ]  E N = 0, 1 ,2 , .  . 
for the finite-element equation. To calculate E L  we use asymptotic expansions for 
a 2 N (  Y), bZNt2( Y) which are given by relation (20.2.30) of Abramowitz and Stegun 
(1968). The expansions show that E L  have the correct continuum limit. 

In tables 1 and 2 we give in the first column the relative error of the lattice 
space eigenvalue compared with its continuum limit, i.e. for eigenvalue E N  = E h  or E &: 

(5.2) 

Table 1. Lattice spacing for the first eigenvalue ( N  = 0 )  in the case of a harmonic oscillator. 

Relative 
error 

Finite-diff erence Finite-element 
lattice lattice 

0.0203 
0.0167 
0.0127 
0.0101 
0.0090 
0.0066 
0.0055 

0.282 
0.256 
0.224 
0.200 
0.189 
0.168 
0.149 

0.400 
0.364 
0.318 
0.285 
0.268 
0.231 
0.211 
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Table 2. Lattice spacing for the second eigenvalue ( N  = 1 ) in the case of a harmonic 
oscillator. 

Relative Finite-difference Finite-element 
error lattice lattice 

0.033 1 0.277 
0.0291 0.260 
0.0222 0.228 
0.0176 0.204 
0.0101 0.155 
0.0077 0.136 
0.0055 0.115 

0.398 
0.373 
0.326 
0.291 
0.22 1 
0.193 
0.163 

In columns two and three we give the lattice spacing a which gives this relative 
error for the jnite-dzference and jnite-element equations, respectively. Table 1 give 
the results for the lowest symmetric state ( N  = 0) and table 2 the results for the lowest 
antisymmetric state ( N  = 1). 

It will be seen from these tables that the jnite-diference eigenvalues converge more 
slowly to their continuum limit than the corresponding jnite-element values. However, 
as mentioned earlier, the eigenfunctions which are solutions of the jnite-diference 
eigenvalues are non-zero only on the sublattice defined by even n or odd n and the 
effective spacing of this sublattice is 2a. If this spacing is used for the finite-diference 
lattice, then the numbers given in the second columns of each of the tables should be 
doubled. In that case the jnite-diference eigenvalues converges more quickly than the 
jnire-element eigenvalues to their continuum limits. 

We have performed similar calculations for higher values of N and the same effect 
is seen. It is also observed that, as N increases, an increasingly finer lattice is needed 
to get the same relative error, a trend already apparent from the results in tables 1 and 
2.  This is to be expected since, as N increases, the continuum eigenfunctions become 
more rapidly varying functions of x. 

The lattice wavefunction &$"Nan) is compared in figures 1 and 2 with the 
corresponding continuum wavefunction q, (x )  = (1/ 7 ~ " ~ 2 ' ~ N  exp( -x2/2) H ,  (x) 
for N = 0 and 1. It will seen for lattice spacing a = 0.2 that the lattice wavefunction 
is already a good approximation to the continuum wavefunction at the lattice points. 

The eigenvalue spectrum for the finite-dzference Schrodinger equation in the case 
of linear potential V ( x ) =  1x1 are given by, for the symmetric case, the condition 
(Jurkiewicz and Woseik 1978b) 

J & - A , 2 (  y ,  = ( 5 . 3 a )  

and for the antisymmetric case 

J Y - A / 2 (  y ,  = (5.36) 

where Y = X /  16, A = E / a  and X is defined earlier. The corresponding lattice space 
wavefunctions are 

$ ( a n )  = N'JY- .4 ,2+n(  Y )  
where N' is a suitable normalisation constant. 

As in the harmonic oscillator case, we present results in tables 3 and 4 comparing 
numerically the rates of convergence of the two lowest energy eigenvalues in the 
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-6 -3  C 

-0 4 

-0 a 

3 6 

Figure 1. Lattice and continuum eigenfunctions for the ground state ( N  = 0) in the case 
of a harmonic oscillator. -, continuum wavefunction; x x x ,  lattice wavefunction. 

-0 8 1 
Figure 2. Lattice and continuum eigenfunctions for the first excited state ( N  = 1) in the 
case of a harmonic oscillator. Key as for figure 1. 

finite-diference case given by (5.3) with those in the finite-element case given by 
conditions 

Wx+A,,,2(4X) = 0 (4.11a) 
for antisymmetric states and condition 

for symmetric states. 
Wk+A, , ,2(4X)  = 0 (4.11b) 
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Table 3, Lattice spacing for the first eigenvalue ( N  = 0) in the case of a linear potential. 

Relative Finite-difference Finite-element 
error lattice lattice 

0.01 1 24 0.155 70 
0.008 87 0.138 73 
0.007 86 0.130 74 
0.006 56 0.1 19 57 
0.005 91 0.113 62 
0.004 52 0.099 56 

1.22471 
1.091 62 
0.880 86 
0.838 19 
0.702 10 
0.625 08 

Table 4. Lattice spacing for the second eigenvalue ( N  = I )  in the case of a linear potential. 

~~ 

Relative Finite-difference Finite-element 
error lattice lattice 

0.024 78 0.402 58 
0.020 61 0.365 13 
0.017 80 0.339 65 
0.016 04 0.320 58 
0.013 38 0.293 03 
0.01 1 03 0.265 53 
0.008 44 0.232 10 

0.560 43 
0.514 54 
0.476 36 
0.450 58 
0.414 22 
0.376 87 
0.328 51 

As previously, we give the lattice spacing necessary to obtain a given relative error. 
Once again we see that the Jinite-diference eigenvalues converge more slowly to their 
continuum values than the corresponding Jinite-element values. 

Finally we compare the Jinite-element lattice wavefunction with the continuum 
wavefunction for the two lowest-energy eigenstates in figures 3 and 4. The lattice space 

Figure 3. Lattice and continuum eigenfunctions for the ground state ( N  = 0) in the case 
of a linear potential. Key as for figure 1. 
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Figure 4. Lattice and continuum eigenfunctions for the first excited state ( N  = 1) in the 
case of a linear potential. Key as for figure 1. 

wavefunction $( an) ,  given by (4.12a, b )  and normalisation conditions (4.24) and (4.26), 
is plotted at the lattice points x = nu and compared with the continuum wavefunction 
Ai(x - E ) .  We have chosen a = 0.2 and we see already, for this lattice spacing, $ ( a n ) ,  
is a good approximation to the continuum wavefunction. 

In this work we have considered the finite-element Schrodinger equation (2.5) which 
also arises from group theoretical considerations. Despite its somewhat more compli- 
cated form than the corresponding finite-dzference expression (2.2), we have been able 
to find explicit solutions for the harmonic oscillator and linear potentials. Surprisingly 
in the harmonic oscillator case, the expression for the energy eigenvalue spectrum is 
much simpler for the finite-element case. The corresponding eigenfunctions in momen- 
tum space are proportional to Gegenbauer polynomials and could prove a useful basis 
for variational calculations on the lattice. Future work could involve an extension to 
higher dimensions and a study of properties, in particular of the harmonic oscillator 
eigenfunctions in lattice space such as recurrence relations. 
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